Area Specific Curets

Presented by:
Mellissa Boyd, RDH, BSDH

Objectives
• Determine the proper placement and adaptation of area-specific curets
• Review the techniques used in activating an area-specific curet
• Select the correct cutting edge of the instrument
• Utilize area-specific curets to remove calculus deposits
• Maintain neutral positioning for all aspects of instrumentation

Area Specific Curets

• Designed for specific areas and surfaces
• Double ended, not always paired
• Semi-circular
• Light to medium calculus
 — “rigid” design for heavy calculus

Area-Specific Curets

• Used subgingivally for root surface debridement
• Self-angulated working-end
 — Cutting edge is 70° angle to terminal Shank
 — Only one cutting edge per working-end

Correct Cutting Edge

• Hold instrument so terminal Shank is perpendicular to floor
• Look at face of working-end
• Find one cutting edge lower than the other
• Lower cutting edge is the one used

Area-Specific Curets

• Cutting edge automatically in position
• No need to tilt instrument to engage cutting edge
• Still insert with closed angle
Anterior Area-Specific Curets

- SG1/2 9 AP E2
- Difference between SG 1/2 vs. SG 1/2 AP
 - AP has thinner & smaller blade
 - AP has mod. Rigid Shank
 - AP provides easier access and insertion under tight tissue
- Terminal Shank parallel to tooth surface being instrumented
- Use one working-end for toward; flip to other working-end for away

Anterior Technique

- Start on opposite canine from operator
- Insertion
 - Midline
 - Closed angle (0-40°)
 - Open angle = Shank returns to parallel position
- Multidirectional PULL strokes
- Firm lateral pressure to begin, lighter as finish

Anterior Technique

- Roll instrument handle at line angle to keep side of toe third adapted
- Continue strokes at least halfway across proximal surface
- Complete all surfaces toward, change position and do surfaces away
- Overlap midline

Area Specific Root Surface Debridement

- Knowledge of root morphology is key to successful root debridement
- Tactile ability
- Keep toe third adapted to tooth surface and instrument will automatically follow contour of roots

Root Morphology

- Careful adaptation of working-end required
- Floss will not disrupt bacteria in a proximal root concavity
- Adaptation to a concavity requires a handle roll to enter area to keep cutting edge adapted to tooth

Floss does WHAT?
How do I get in there?
ROLL! (heel goes out and side of toe-third cutting edge goes in)
Posterior Area-Specific Curets

- 4 area-specific curets available to debride posterior teeth
 - SG 11/12 or 15/16AP = Mesial
 - SG 13/14 or 17/18AP = Distal
- Used in combination
 - SG 11/12 & 13/14
 - SG 15/16 & 17/18

Posterior Technique

- Begin with D surfaces (17/18)
 - Select correct working-end (lower cutting edge)
- Insert
 - DF line angle
 - Closed angle (0-40°)
 - Open angle = terminal shank returns to parallel position
- Roll at line angle to advance into D
- Multidirectional PULL strokes

Posterior Technique

- Firm lateral pressure to begin, lighter as finish
- Complete
 - All D surfaces starting at the most D surface in quadrant
 - D aspect of M roots of molars (furcation area)

Debride distal of mesial root

Posterior Technique

- Complete F and M surfaces (15/16)
- Start with most posterior tooth
- Insertion
 - Overlap DF line angle
 - Toe pointed toward base of sulcus
 - Closed angle, then return shank to parallel position
 - Horizontal stroke around line angle

Change instruments, find correct working end, and complete the mesial surfaces
Posterior Technique

• Work across F surface, roll handle at line angle to adapt cutting edge to M

• Remember M aspect of D roots of molars (furcation area)

Debride mesial of distal root

Posterior Technique

• Continue sequence to next tooth until quadrant complete

• Change positions, flip end, and complete lingual surfaces the same way

Are you ready for the challenge?

Are you ready for the challenge? This is a BIG part of eating the elephant!

Are you hungry???

References
